Optimization of the Axial Porosity Distribution of Porous Inserts in a Liquid-piston Gas Compressor Using a One-dimensional Formulation

نویسندگان

  • Chao Zhang
  • Terrence W. Simon
چکیده

A One-Dimensional (One-D) numerical model to calculate transient temperature distributions in a liquid-piston compressor with porous inserts is presented. The liquid-piston compressor is used for Compressed Air Energy Storage (CAES), and the inserted porous media serve the purpose of reducing temperature rise during compression. The One-D model considers heat transfer by convection in both the fluids (gas and liquid) and convective heat exchange with the solid. The Volume of Fluid (VOF) method is used in the model to deal with the moving liquid-gas interface. Solutions of the One-D model are validated against full CFD solutions of the same problem but within a two-dimensional computation domain, and against another study given in the literature. The model is used to optimize the porosity distribution, in the axial direction, of the porous insert. The objective is to minimize the compression work input for a given piston speed and a given overall pressure compression ratio. The model equations are discretized and solved by a finite difference method. The optimization method is based on sensitivity calculations in an iterative procedure. The sensitivity is the partial derivative of compression work with respect to the porosity value at each optimization node. In each optimization round, the One-D model is solved as many times as there are optimization nodes, and each time the porosity value at a single optimization node is changed by a small amount. From these calculations, the sensitivity of changing the porosity distribution to the total work input (objective) is obtained. Based on this, the porosity distribution is updated in the direction that favors the objective. Then, the optimization procedure marches to the next round and the same calculations are completed iteratively until an optimum solution is reached. The optimization shows that porous media with high porosity should be used in the lower part of the chamber and porous media with low porosity should be used in the upper part of the chamber. An optimal distribution of porosity over the chamber is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling and Trajectory Optimization of Water Spray Cooling in a Liquid Piston Air Compressor

An efficient and sufficiently power dense air compressor/expander is the key element in a Compressed Air Energy Storage (CAES) approach. Efficiency can be increased by improving the heat transfer between air and its surrounding materials. One effective and practical method to achieve this goal is to use water droplets spray inside the chamber when air is compressing or expanding. In this paper,...

متن کامل

Performance Prediction Modeling of Axial-Flow Compressor by Flow Equations

Design models of multi- stage, axial flow compressor are developed for gas turbine engines. Axial flow compressor is one of the most important parts of gas turbine units. Therefore, its design and performance prediction are very important. One-dimensional modeling is a simple, fast and accurate method for performance prediction of any type of compressors with different geometries. In this appro...

متن کامل

Nelder-Mead algorithm optimization and Galerkin’s method thermal performance analysis of circular porous fins with various profiles in fully wet conditions

The main objective of this research is to analyze optimization and the thermal performance of circular porous fins with four different profiles, rectangular, convex, triangular and concave under fully wet conditions. In this research, a linear model was used for the relationship between humidity and temperature. Also, modeling is assumed one-dimensional and the temperature changes only in the d...

متن کامل

Performance Modeling and Examination of Losses in the Axial -Flow Compressor and Comparisonwith Experimental Results

The performance prediction of axial flow compressors at different speeds and under various pressure ratio conditions are still being developed because of costly empirical experiments. One-dimensional modeling is a simple, fast and accurate method for performance prediction in any type of compressor with different geometries. In this approach, inlet flow conditions and compressor geometry are kn...

متن کامل

One-Dimensional design of a three-stage axial compressor with Its 3D numerical simulation

The purpose of this study is to design a three-stage axial compressor with identical pressure ratio which makes an adequate pressure ratio and efficiency in design point conditions with rotational velocity of 38000rpm and mass flow rate of 3.2kg/s. First of all, considering some restrictions such as Dehaller number more than 0.7 in all sections of the stator and the rotor, and relative Mach num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013